# Anodic reactions of $Ni_3S_2$ , $\beta$ -NiS and nickel matte

# D. C. PRICE\*, W. G. DAVENPORT<sup>†</sup>

Department of Mining and Metallurgical Engineering, McGill University, Montreal, Quebec, Canada

Received 31 July 1981

The anodic reactions of Ni<sub>3</sub>S<sub>2</sub>,  $\beta$ -NiS and a commercial nickel matte have been investigated galvanostatically. It is shown that the matte as well as both compounds decompose with loss of nickel ions through the series of phases: Ni<sub>1.5</sub>S<sub>2</sub>  $\rightarrow$  Ni<sub>1.2</sub>S<sub>2</sub>  $\rightarrow$  Ni<sub>2</sub>  $\rightarrow$  Ni<sup>2+</sup> + 2S<sup>0</sup>

# 1. Introduction

Modern interest in the direct electrorefining of nickel matte began with the work of Loshkarev *et al.* [1] in 1945. This later led to the INCO matte electrolysis process [2, 3] performed at Thompson, Manitoba, and similar processes which are now in operation at the Norlisk Mining and Metallurgical Combine, USSR, and the Shimura Nickel Company in Tokyo, Japan [4].

Since 1945 much work has been done to elucidate the exact nature of the leaching reactions, usually by the measurement of static or dynamic potentials, often coupled with solid state analysis. A comprehensive review of the literature will not be presented in this work, both because summaries and reviews of previous work are available [5– 11], and because the analysis now presented is apparently novel to this system.

The present investigation involves the anodic treatment of synthetic  $Ni_3S_2$  and  $\beta$ -NiS, and samples of a commercial nickel matte (kindly supplied by the International Nickel Company Limited) under constant current conditions. The results are analysed by methods based on classical chronopotentiometric theory.

# 2. Experimental equipment and materials

#### 2.1. Experimental apparatus

All the experiments were performed under galvanostatic conditions in an unpartitioned cell in a thermostatically controlled water bath. During anodic treatment, the potential at the specimen surface was measured relative to a standard calomel electrode via a Luggin probe and was continuously plotted on a chart recorder.

# 2.2. Mineral and matte specimens

2.2.1.  $Ni_3S_2$  and  $\beta$ -NiS. Heazlewoodite  $Ni_3S_2$ , and millerite,  $\beta$ -NiS, were synthesized from spectrographically pure elements in a two-bulb system, previously described for the synthesis of copper sulphides [12]. These minerals were melted, cast in the synthesis tubes and then sectioned to give discs of material 3–6 mm thick. Optical analysis indicated that a single phase was present in each synthesis and X-ray diffraction analysis confirmed that the phase was either heazlewoodite or millerite.

2.2.2. Nickel matte. An INCO 'baby' matte anode was sectioned into cubes with edges of approximately 1 cm. (Analyses of a number of specimens indicated that the matte composition was: nickel 74%, copper 3%, cobalt 0.7%, sulphur 20%.) Optical analysis indicated the presence of two phases in the matte. X-ray diffraction analyses showed that these phases were heazlewoodite and nickel metal.

Electrical contact to each specimen was made by a copper wire attached to one surface of the specimen with a conductive epoxy resin. The specimen was then mounted in a low temperature

\*Present address: Duval Corporation, 4715 East Fort Lowell Road, Tucson, Arizona 85712, USA. †Present address: Department of Metallurgy, University of Arizona, Tucson, Arizona 87521, USA.

Fig. 1. Potential-time relationship for Ni<sub>3</sub>S<sub>2</sub> anodically treated in 100 g  $H_2$ SO<sub>4</sub> dm<sup>-3</sup>, 750

epoxy resin such that only the face opposite the wire connection was exposed. The area of the exposed face was determined photographically.

#### 3. Results and analysis

### $3.1. Ni_3S_2$

The anodic treatment of specimens of synthetic  $Ni_3S_2$  was performed at 50° C in a solution of 100 g  $H_2SO_4$  dm<sup>-3</sup> at current densities of 100 to 2500 Am<sup>-2</sup>.

The form of the potential-time plot in all cases was essentially as illustrated in Fig. 1, which can be conveniently described in terms of four stages. In Stage 1 the potential increased very slowly, but at the end of Stage 1, point A, a rapid transition occurred to a slightly higher potential which was the beginning of Stage 2. During Stage 2, the potential rose at a greater rate than in Stage 1 and passed through a point of inflection (point B) before the rate of potential increase began to decrease at the start of Stage 3 (point C), Stage 3 again consisted of a slowly increasing potential until a further potential increase occurred at a point D to a high and slightly varying potential.

Solution and solid phase analyses demonstrated that nickel was preferentially leached from the sulphide during Stages 1 and 2 indicating a reaction of the form:

$$Ni_3S_2 \rightarrow Ni_{3-x}S_2 + xNi^{2+} + 2xe^{-}$$
. (1)

During Stage 3 sulphur was also detected, formed by the reaction:

$$Ni_{3-x}S_2 \rightarrow (3-x)Ni^{2+} + 2S^0 + 2(3-x)e^-$$
. (2)

Am<sup>-2</sup>, 50° C.

During Stage 4 oxygen was found to be evolved in addition to mineral dissolution.

The values of  $i_0 t^{1/2}$  have been calculated and the average of the values for each current density are listed in Table 1. It can be seen, within the limits of experimental error, that

$$i_{o}t^{1/2} = \text{constant}$$
 (3)

for all stages.

In previous papers [13, 14], it was shown that the solid electrode system, i.e. the mineral crystal structure, can be considered analogous to an unstirred convection free solution, and hence the classic equations of chronopotentiometry can be applied to the diffusion of the mobile nickel ions through the crystal.

By comparison with chronopotentiometric theory [15], for a diffusion controlled step-wise reaction where the product of the first stage becomes the reactant in the second stage (cf. Equations 1 and 2) [16]:

$$\frac{n_2}{n_1} = \frac{(t_1 + t_2)^{1/2} - t_1^{1/2}}{t_1^{1/2}} \tag{4}$$

where:  $n_1$  and  $n_2$  are the number of electron equivalents involved in the electrolysis of 1 mole of the electroactive species in Stage 1 and Stage 2,



Table 1. The anodic treatment of  $Ni_3S_2$ . Average values of  $i_0t^{1/2}$   $Am^{-2} s^{1/2}$ 

|                                        | <i>i</i> o <i>t</i> <sup>1/2</sup> |             |                                  |                  |  |  |  |
|----------------------------------------|------------------------------------|-------------|----------------------------------|------------------|--|--|--|
| Current density<br>(Am <sup>-2</sup> ) | Stage 1                            | Inflection  | Stages<br>(1 + 2)                | Stages $(1+2+3)$ |  |  |  |
| (1) Present inves                      | stigation                          | 50° C, 100  | g H <sub>2</sub> SO <sub>4</sub> | dm <sup>-3</sup> |  |  |  |
| 100                                    | 10 218                             |             |                                  | _                |  |  |  |
| 250                                    | 9995                               | 12514       | 13 693                           | _                |  |  |  |
| 500                                    | 9 967                              | 13211       | 14 946                           | 21960            |  |  |  |
| 750                                    | 10884                              | 13139       | 14 711                           | 21 945           |  |  |  |
| 1 0 0 0                                | 11 061                             | 12 208      | 12 845                           | 20 235           |  |  |  |
| 1 250                                  | 11 195                             | 12853       | 13874                            | 21 0 25          |  |  |  |
| 1 500                                  | 10457                              | 12187       | 13972                            | 20 751           |  |  |  |
| 2 000                                  | 11477                              | 14 319      | 16135                            | 23 379           |  |  |  |
| 2 500                                  | 10781                              | 12 399      | 14 5 5 5                         | 21 078           |  |  |  |
| All values                             | 10726                              | 12853       | 14 353                           | 21 651           |  |  |  |
|                                        | ±1 000                             | ±1 240      | ±1 321                           | ±1776            |  |  |  |
| (2) Kato and Ok<br>0.1 mol dm          | ci [17] 4<br>⁻³ NiSO₄              | 0° C, 1 mol | e dm⁻³ H                         | $H_{2}SO_{4} +$  |  |  |  |
| Extrapolated to                        | $t^{1/2} = 0$                      |             | 12609                            | 19.083           |  |  |  |

respectively;  $t_1$  and  $t_2$  are the respective transaction times for Stage 1 and Stage 2. From Equations 1 and 2:

$$\frac{n_2}{n_1} = \frac{3-x}{x}$$
 (5)

i.e. the value of x can be found from measurements of the transition times.

In the present case, nickel was found to dissolve preferentially to the end of Stage (1 + 2), i.e. point C in Fig. 1, and hence  $t_1$  may have the values denoted by points A, B or C;  $t_2$  will be given from point D.

From the values of  $t_1$ ,  $t_2$  and  $i_0$  and Equations 4 and 5, the values of x have been calculated. The results indicate that N<sub>3</sub>S<sub>2</sub> decomposes in stages represented by the scheme:

$$\begin{split} \mathrm{Ni}_{3}\mathrm{S}_{2} &\to \mathrm{Ni}_{1,5(\pm 0,1)}\mathrm{S}_{2} \to \mathrm{Ni}_{1,2(\pm 0,1)}\mathrm{S}_{2} \to \\ &\qquad \mathrm{Ni}_{1,0(\pm 0,1)}\mathrm{S}_{2}. \end{split} \tag{6}$$

It appears likely that the two well-defined potential increases correspond to the compounds  $Ni_3S_4$  and  $NiS_2$ . The point of inflection at  $Ni_{1,2}S_2$  may indicate that this is an unusually stable phase or a true compound.

X-ray analysis of the residues indicated the

presence of  $\beta$ -NiS and sulphur in addition to  $Ni_3S_2$ , although the first compound is not predicted by chronopotentiometric analysis. However, these X-ray results may be due to alterations in the phases after the current has been removed, or may be due to the similarity in the X-ray patterns of  $\beta$ -NiS and a phase with less nickel than represented by this formula. The latter would be in agreement with the work of Kato and Oki [17] where the nickel content of the surface material was shown to be less than 60% (cf. NiS-65% Ni,  $Ni_3S_4$ -58% Ni) although the phase was identified as  $\beta$ -NiS by X-ray diffraction. Similar results have previously been shown in the anodic treatment of bornite [13] Cu<sub>5</sub>FeS<sub>4</sub>, where X-ray diffraction indicated the presence of the compound Cu<sub>3</sub>FeS<sub>4</sub> but electron probe microanalysis proved that this compound was Cu<sub>2</sub> <sub>5</sub>FeS<sub>4</sub>.

The re-analysis of the transition time measurements of Kato and Oki [17] results in the reaction scheme:

$$Ni_3S_2 \rightarrow NiS_2 \rightarrow Ni^{2+} + S^0.$$
<sup>(7)</sup>

Their anodic treatments were performed at 40° C in a solution of 1 mol dm<sup>-3</sup> H<sub>2</sub>SO<sub>4</sub> + 0.1 mol dm<sup>-3</sup> NiSO<sub>4</sub>. The analysis of their results is different to that performed for the results of the present investigation because their  $i_0 t^{1/2}$  products for the two reported transitions are not constant but vary with time as shown in Fig. 2.

From classical chronopotentiometric theory, extrapolation of  $i_0 t^{1/2}$  versus  $i_0$  to  $i_0 = 0$  will give the value of  $i_0 t^{1/2}$  for diffusion control. However, it has been shown previously [14] for the anodic dissolution of the simple copper sulphides that the data are best represented by an equation of the form:

$$i_0 t^{1/2} = K - i_x t^{1/2} \tag{8}$$

where K is the value of  $i_0 t^{1/2}$  at  $t^{1/2} = 0$  and  $i_x$  is a constant. The same argument can be applied to both stages of the reaction, and for the second stage the intersection at  $t^{1/2} = 0$  will correspond to  $i_0 [(t_1 + t_2) - t_1]^{1/2}$  for diffusion control. Hence, from these two values and Equations 4 and 5, the composition of the intermediate phase can be calculated.

The  $i_0 t^{1/2}$  values for diffusion control calculated from Fig. 2 are listed in Table 1 and the composition of the intermediate phase calculated



from these values is  $Ni_{1,0\pm0.2}S_2$ , in agreement with the experimental results of the present investigation.

Equation 8 indicates that  $i_0 t^{1/2}$  will decrease with an increase of  $t^{1/2}$ , but it can be seen in Fig. 2 that  $i_0 t^{1/2}$  for the second stage increases with an increase of  $t^{1/2}$ . In the previous application of this form of Equation 14 it was postulated that  $i_x$  is a measure of the chemical dissolution effect of the solution. It has not, however, been possible to experimentally confirm the effects of various solutions of  $Ni_3S_2$  or the intermediates in the present investigation. It has been shown that this analysis gives consistent results and that they are nevertheless in agreement with the previous work of DeRantny and Breckpot [18]. In the investigation of these workers, it was indicated that the conversion of NiS to NiS<sub>2</sub> can be anticipated from the position of the metal ions in the NiS structure. However, the present results do not agree with

Fig. 2.  $i_0 t^{1/2}$  versus  $t^{1/2}$  relationship for Ni<sub>3</sub>S<sub>2</sub> treatment. Recalculated from the work of Kato and Oki [17]. 40° C, 1 mol dm<sup>-3</sup> H<sub>2</sub>SO<sub>4</sub> + 0.1 mol dm<sup>-3</sup> NiSO<sub>4</sub>.

their findings that the composition may approach  $Ni_{0.6}S_2$  before sulpur is formed.

Chronopotentiometric theory indicates that the diffusion coefficient of the nickel ions through the lattice can be calculated if the stoichiometry of the reactions and the concentration of the electroactive species are known. From the listed density of  $Ni_3S_2$  [19] and the stoichiometry calculated here the mean values of D, the diffusion coefficient, have been calculated to the ends of each stage of reaction (Table 2) for the present work and for that of Kato and Oki [17]. In addition the activation energy of the diffusion process has been calculated from these two investigations (Table 3).

# 3.2. Nickel matte

The anodic reactions of polished specimens of nickel matte were examined at 40, 50 and  $60^{\circ}$  C

|  | Table 2. Diffusion | coefficients and | activation | energy o | f nicl | cel | ions | in I | Ni 3 | S2 |
|--|--------------------|------------------|------------|----------|--------|-----|------|------|------|----|
|--|--------------------|------------------|------------|----------|--------|-----|------|------|------|----|

|                           | $D(m^2 s^{-1})$        |                          |                        |                        |  |  |  |
|---------------------------|------------------------|--------------------------|------------------------|------------------------|--|--|--|
| Temperature (°C)          | Stage 1 Inflection     |                          | Stages (1 + 2)         | Stages $(1 + 2 + 3)$   |  |  |  |
| (1) Present investigation |                        |                          |                        |                        |  |  |  |
| 50                        | $2.98 \times 10^{-12}$ | 2.97 × 10 <sup>-12</sup> | $3.00 \times 10^{-12}$ | $2.98 \times 10^{-12}$ |  |  |  |
| (2) Kato and Oki [17]     |                        |                          |                        |                        |  |  |  |
| 40                        |                        |                          | $2.32 \times 10^{-12}$ | $2.36 \times 10^{-12}$ |  |  |  |
| Activation energies (J m  | ole <sup>-1</sup> )    |                          | 10 200                 | 11 200                 |  |  |  |

|                  |                             | $i_0 t^{1/2}$ |          |            |                |                    |
|------------------|-----------------------------|---------------|----------|------------|----------------|--------------------|
| Temperature (°C) | Current density $(Am^{-2})$ | Prewave       | Stage 1  | Inflection | Stages (1 + 2) | Stages (1 + 2 + 3) |
|                  | ( 250                       | 9951          | 12646    | 16130      | 17498          |                    |
|                  | 500                         | 10 794        | 11445    | 15 211     | 17 341         | 40942              |
| 40               | 1 000                       | 12 301        | 10733    | 13889      | 16068          | 26810              |
|                  | 1 500                       | 12650         | 11819    | _          | 15756          | 23 557             |
|                  | 2 000                       | 12285         | 11 251   | 12961      | 14432          | 20726              |
|                  | ( 250                       | 13 829        | 14 1 3 1 | 21 881     | 24 186         | _                  |
|                  | 500                         | 11084         | 11873    | 18884      | 20 978         | _                  |
| 50               | 1 000                       | 11467         | 11 702   | 18 393     | 21 278         | 31 5 7 8           |
|                  | 1 500                       | 12 302        | 10 569   | 15 934     | 18630          | 26 380             |
|                  | 2 000                       | 11776         | 10849    | 14 235     | 16 099         | 23 807             |
| 60               | ( 500                       | 13807         | 11710    | 25 1 50    | 28 309         | _                  |
|                  | 1 000                       | 15 569        | 10 003   | 20 267     | 23780          | 37 686             |
|                  | 1 500                       | 15 909        | 10 5 2 1 | 19409      | 22 622         | 32 312             |
|                  | 2 000                       | 15 498        | 10126    | 17405      | 20 391         | 29 696             |
|                  | 2 500                       | 17 294        | 10426    | 17 509     | 21 102         | 29 623             |

Table 3. The anodic treatment of nickel matte 100 g,  $H_2SO_4$  dm<sup>-3</sup>. Average values of  $i_0t^{1/2}$  Am<sup>-2</sup>  $s^{1/2}$ 

in a solution of 100 g  $H_2SO_4$  dm<sup>-3</sup>, at current densities of 250 and 2500 Am<sup>-2</sup>.

The shape of the potential-time relationship is shown in Fig. 3. By comparison with Fig. 1 it can be seen that there is an additional first stage, which in this paper will be referred to as the 'prewave stage'.

The low potential in the prewave range corresponds to dissolution of the metallic nickel phase in the matte. When the rate of reaction of this phase was insufficient to maintain the imposed current alone the potential rose to a value where the Ni<sub>3</sub>S<sub>2</sub> phase reacted (Fig. 3, point X) in a manner identical to the stages previously noted with synthetic  $Ni_3S_2$ . Nickel ions were liberated during Stages 1 and 2, and sulphur was found to be present during Stage 3. In Stage 4, oxygen was evolved in addition to the electrochemical dissolution of the two matte phases.

The values of  $i_0 t^{1/2}$  have been calculated for all the stages, but for Stages 1, 2 and 3, t = 0 is taken as the end of the prewave stage. This assumption is essential as the treatment involves the reaction of two separate phases within a single electrode.

The average values of  $i_0 t^{1/2}$  for 40, 50 and 60° C are listed in Table 3. It is apparent that



Fig. 3. Potential-time relationship for nickel matte anodically treated in 100 g  $H_2SO_4$  dm<sup>-3</sup>. 1500 Am<sup>-2</sup>, 50° C.



Fig. 4.  $i_{O}t^{1/2}$  versus  $i_{O}$  relationship for nickel matte treatment. 40° C, 100 g H<sub>2</sub>SO<sub>4</sub> dm<sup>-3</sup>. • Stage 3; • Stage 2;  $\triangle$  inflection; = Stage 1.

 $i_0 t^{1/2}$  is not constant for any stage. The results can be quantitatively treated by either: (a) classical chronopotentiometric theory, or; (b) adaption of the solid state diffusion theory previously adopted.

(a) Chronopotentiometric theory indicates that if the electrochemical reaction is preceded by a rate-determining chemical reaction the value of  $i_0 t^{1/2}$  will decrease with an increase of  $i_0$  [20]. In a previous paper [13] it was shown that at  $i_0 = 0$  and where  $i_0 \rightarrow \infty$  the equations reduce to those for diffusion control and, therefore, the stoichiometry of the reaction may be found. In addition, extrapolation of the plot of  $i_0 t^{1/2}$  versus  $i_0$  to  $i_0 = 0$  will give the value of  $i_0 t^{1/2}$  for diffusion control. This plot has been drawn for treatment at 40° C (Fig. 4) and it can be seen that the values of  $i_0 t^{1/2}$  can be extrapolated to  $i_0 = 0$  and a limiting value is attained where  $i_0 \rightarrow \infty$ . The values of  $i_0 t^{1/2}$  for diffusion control, i.e. at  $i_0 = 0$ , are listed (Table 4a) in addition to the activation energy of the reaction. From the values of  $i_0 t^{1/2}$  at  $i_0 = 0$  and  $i_0 \rightarrow \infty$ , the values of x (Ni<sub>3-x</sub>S<sub>2</sub>) have also been calculated (Table 5).

(b) As indicated in the previous reanalysis of the work of Kato and Oki, the plot of  $i_0 t^{1/2}$  versus  $t^{1/2}$  will extrapolate to the value of  $i_0 t^{1/2}$  for diffusion control at  $t^{1/2} = 0$  (Fig. 5). From this plot, it appears possible that  $i_0 t^{1/2}$  may tend towards a limit at large values of  $t^{1/2}$ . This has not been predicted by the theory presented. The values of  $i_0 t^{1/2}$  at  $t^{1/2} = 0$  are listed and the corresponding activation energies (Table 4a, b) and the values of x in the intermediate phases (Ni<sub>3-x</sub>S<sub>2</sub>) have also been calculated (Table 5) for  $t^{1/2} = 0$ .

Comparison of the values of  $i_0 t^{1/2}$ , the activation energy, and x by the above two methods with the corresponding values previously calculated for synthetic Ni<sub>3</sub>S<sub>2</sub> (Tables 1, 2, 4a, b)

| Temperature (°C)        | Stage 1                      | Inflection              | <b>Stages</b> (1 + 2) | Stages $(1 + 2 + 3)$ |
|-------------------------|------------------------------|-------------------------|-----------------------|----------------------|
| A. Chronopotentiome     | etric theory. i <sub>c</sub> | $t^{1/2} at i_0 = 0$    |                       |                      |
| 40                      | 13002                        | 16 791                  | 18128                 | 38 822               |
| 50                      | 13583                        | 22061                   | 25 220                | 38 0 30              |
| 60                      | 11 649                       | 26 580                  | 30 003                | 45 216               |
| B. Solid-state diffusio | n theory. $i_0 t^{1/2}$      | $^{2}$ at $t^{1/2} = 0$ |                       |                      |
| 40                      | 10964                        | 12538                   | 13 281                | 17 264               |
| 50                      | 10 397                       | 11 349                  | 12776                 | 18738                |
| 60                      | 10467                        | 15 444                  | 19 663                | 12 252               |

Table 4a. Nickel matte electrolysis. Calculated values of iot<sup>1/2</sup> for diffusion control

Table 4b. Nickel matte electrolysis. Activation energy (J mole<sup>-1</sup>)

|                                 | Stages (1 + 2 + 3) |
|---------------------------------|--------------------|
| A. Chronopotentiometric theory  | 13 100             |
| B. Solid-state diffusion theory | 33 100             |



Fig. 5.  $i_0 t^{1/2}$  versus  $t^{1/2}$  relationship for nickel matte treatment. 40° C, 100 g H<sub>2</sub>SO<sub>4</sub> dm<sup>-3</sup>. • Stage 3; • Stage 2;  $\triangle$  inflection; • Stage 1.

indicates a slightly better agreement with the analysis using classic chronopotentiometric theory.

No attempt has been made at the present time to analyse the dissolution of the metallic phase in the prewave stage of the reaction sequence because of insufficient information on the composition of this phase and the changes the phase undergoes during anodic treatment. It is apparent, however, (Table 3) that this may also involve solid-state diffusion [21] with possible chemical effects of the solution.

#### 3.3.β-NiS

The reactions of synthetic  $\beta$ -NiS were investigated at 50° C at 250–2000 Am<sup>-2</sup> in 100 g H<sub>2</sub>SO<sub>4</sub> dm<sup>-3</sup>



Table 5. Nickel matte electrolysis. Calculated values of x  $(Ni_{3-x}S_2)$ 

| Temper                          | rature (°C)              | Stage 1    | Inflection | Stages $(1 + 2)$ |  |  |  |  |
|---------------------------------|--------------------------|------------|------------|------------------|--|--|--|--|
| (1) Chronopotentiometric theory |                          |            |            |                  |  |  |  |  |
| (A)                             | $i_0 = 0$                |            |            |                  |  |  |  |  |
|                                 | 40                       | 1.00       | 1.26       | 1.40             |  |  |  |  |
|                                 | 50                       | 1.07       | 1.74       | 1.99             |  |  |  |  |
|                                 | 60                       | 0.77       | 1.76       | 1.99             |  |  |  |  |
| ( <i>B</i> )                    | $i_0 \rightarrow \infty$ |            |            |                  |  |  |  |  |
|                                 | 40                       | 1.56       | 1.76       | 2.05             |  |  |  |  |
|                                 | 50                       | 1.35       | 1.80       | 2.02             |  |  |  |  |
|                                 | 60                       | 1.04       | 1.77       | 2.10             |  |  |  |  |
| (2) Soli                        | d-state diffi            | usion theo | ry         |                  |  |  |  |  |
|                                 | $t^{1/2} = 0$            |            |            |                  |  |  |  |  |
|                                 | 40                       | 1.91       | 2.18       | 2.31             |  |  |  |  |
|                                 | 50                       | 1.66       | 1.82       | 2.05             |  |  |  |  |
|                                 | 60                       | 1.24       | 1.95       | 2.34             |  |  |  |  |

and at  $3800-5500 \text{ Am}^{-2}$  in a solution of (60 g dm<sup>-3</sup> Ni<sup>2+</sup> + 100 g dm<sup>-3</sup> NaCl + 20 g dm<sup>-3</sup> H<sub>3</sub>BO<sub>3</sub> + 102 g dm<sup>-3</sup> H<sub>2</sub>SO<sub>4</sub>). The latter solution corresponds to the composition of the electrolyte used in the INCO matte electrolysis process [3].

The shape of the potential-time plot in all cases was as indicated in Fig. 6. There were four stages in the reaction sequence: during Stage 1 an almost constant potential was maintained, while in Stage 2 the potential increased much more rapidly with time. After this second stage the potential again increased at a much reduced rate during Stage 3. In the final stage, Stage 4, there was a rapid transition to a high, varying potential at which oxygen was observed to be evolving.

Solution and solid-state analyses indicated that

Fig. 6. Potential-time relationship for  $\beta$ -NiS anodically treated at 100 g H<sub>2</sub>SO<sub>4</sub> dm<sup>-3</sup>, 500 Am<sup>-2</sup>, 50° C.



Fig. 7.  $i_0 t^{1/2}$  versus  $t^{1/2}$  relationship for  $\beta$ -NiS treatment. 50° C, 100 g H<sub>2</sub>SO<sub>4</sub> dm<sup>-3</sup>. • Stage 3; • Stage 2; • Stage 1.

nickel went into the solution at all stages, but sulphur was found to be present only in Stages 3 and 4. No phases other than sulphur and  $\beta$ -NiS could be detected in any product by X-ray diffraction analysis, but the results of the potential changes and the sulphur detection suggest that during Stages 1 and 2 the reactions occurring are:

$$NiS \rightarrow Ni_{1-x}S + xNi^{2+} + 2xe^{-1}$$
(9)

The average values of  $i_0 t^{1/2}$  for the anodic treatments in the two solutions at 50° C are represented in graphical form in Figs 7 and 8.

Analysis of the data for the anodic treatments in  $H_2SO_4$  solution by classic chronopotentiometric analysis, with  $i_o t^{1/2}$  increasing with  $i_o$ , would indicate possible adsorption effects [21], but by combination of the solid-state diffusion analysis now employed with Equations 9 and 10, then:



where t is the value found from  $i_0 t^{1/2}$  extrapolated to  $t^{1/2} = 0$ .  $n_1$  and  $t_1$  refer to the preferential nickel dissolution of Stages 1 and 2; and  $n_2$  and  $t_2$  correspond to Stage 3, where the resulting nickel deficient sulphide decomposes, liberating sulphur.

Figs 7 and 8 illustrate the extrapolation of  $i_0 t^{1/2}$  versus  $t^{1/2}$ . Despite the great differences in the general forms of the  $i_0 t^{1/2}$  versus  $t^{1/2}$  plots it is apparent that the values of  $i_0 t^{1/2}$  at  $t^{1/2} = 0$  are equivalent for each stage within the margins of error of the extrapolations ( $\simeq 20\%$  for Fig. 7,  $\simeq 50\%$  for Fig. 8).

From the results in  $H_2SO_4$  solution the values of x in the intermediate phases,  $Ni_{1-x}S$ , have been calculated. The intermediates indicated by the analysis,  $Ni_{1.6}S$  and  $NiS_2$ , are equivalent to those previously found during anodic treatment of  $Ni_3S_2$  and nickel matte,  $Ni_{1.5}S_2$  and  $NiS_2$ . The latter values are considered to be more reliable because of the greater precision of the results and analyses. The  $Ni_{1.2}S_2$  phase was not indicated in the treatment of  $\beta$ -NiS, but the potential changes during the treatment of millerite could not be followed with sufficient precision to detect whether there was a slight inflection present that would indicate this further intermediate.

Although previous investigations of the anodic treatment of millerite have not suggested the presence of nickel deficient phases, as in the treatment of heazlewoodite, this is apparently due to the reliance on the determination of millerite by X-ray diffraction, although recent work [22] on



Fig. 8.  $i_0 t^{1/2}$  versus  $t^{1/2}$  relationship for  $\beta$ -NiS treatment at 50° C in chloride sulphate electrolyte. • Stage 3; • Stage 2; • Stage 1.

solid phase analyses indicates the possible presence of nickel deficient phases.

The corresponding values of the diffusion coefficient of the nickel ion in the crystal have also been calculated using a published value [23] for the density of  $\beta$ -NiS. The diffusion coefficients (e.g.  $2.36 \times 10^{-12}$  m<sup>2</sup> s<sup>-1</sup> for the total reaction) are in reasonable agreement with previous analyses of the anodic treatment of Ni<sub>3</sub>S<sub>2</sub>.

From Fig. 7, it can be seen that the values of  $i_0 t^{1/2}$  approach limiting values at high  $t^{1/2}$  values. These limiting values are not in the same proportions as the values at  $t^{1/2} = 0$  (i.e. using the previous analysis the values of x are calculated to be 0.16 and 0.3).

### 4. Discussion

The present investigation has indicated the presence of intermediates in the electroleaching of nickel sulphides that have not usually been reported during hydrometallurgical treatment. However, from a phase diagram of the Ni–S system a number of these intermediates could have been anticipated [24]. From this, it is predicted that the removal of nickel from Ni<sub>3</sub>S<sub>2</sub> by leaching should proceed through the following series of phases:

$$Ni_3S_2 \rightarrow Ni_7S_6 \rightarrow NiS \rightarrow Ni_3S_4 \rightarrow NiS_2$$

This is in agreement with the present findings of  $Ni_{1.5}S_2$  and  $NiS_2$  in the leaching sequence, although there was no indication of the compound  $Ni_7S_6$ . Re-examination of the rest potential-composition measurements in the Ni-S system by Ivanov [25] indicate a compound of composition  $Ni_6S_5$ , although it is stated that this is a meta-stable phase.

The difficulty of determining the slight increases in potential during electroleaching that indicate the presence of intermediates has been referred to in previous papers [13, 14]. It appears that rest potential-composition measurements for the range  $Ni_3S_2 \rightarrow Ni_{0,2}S_2$  would provide a relatively simple way of determining which compounds are stable in this system (cf. Koch and McIntyre [26] for an excellent application of this method to the Cu-S system).

The value of the solid-state diffusion coefficient of nickel found in the present experiments appears to be relatively high. However, this has been explained by Wagner [27] as being due to the fact that it is the interdiffusion coefficient rather than the self-diffusion coefficient that is being measured in the type of experiment now performed.

#### Acknowledgements

The authors wish to thank the Natural Science and Engineering Research Council of Canada for financial support of this research. Appreciation is also expressed to Professor W. M. Williams for making available facilities to perform this work. Particular gratitude is due to Mr H. Larsson who provided valuable help in many aspects of the project.

#### References

- M. Loshkarev, O. Esin and G. Lapp, *Zhur. Priklad. Khim.* 18 (1945) 294.
- [2] L. S. Renzoni, R. C. McQuire and M. V. Baker, J Metals 10 (1965) 38.
- [3] W. W. Spence and W. R. Cooke, *Trans. Can. Min. Met.* 67 (1967) 257.
- [4] D. A. D. Boateng and C. R. Phillips, *Min. Sci. Eng.* 10 (1978) 155.
- [5] A. L. Rotinyan, Tsvetnye. Metall. 32 (1954) 88.
- [6] D. M. Chizhikov, et al. Izv. Akad. Nauk. SSR (1962) Chemical Abstracts 58 (1963) 1128h.
- [7] I. S. Ivanov and V. L. Kheifets, Tr. Proekt. Nauch. Issed Inst 'Gipronikel' (Gos. Inst. Proekt, Predpr Nickelevai Prom.) 38 (1968) 71.
- [8] I. S. Ivanov, Zh. Pricklad Khim 41 (1968) 1017.
- [9] F. Habashi, Min. Sci. Eng. 3 (1971) 3.
- [10] L. S. Sinev, N. S. Shchetinin and Y. G. Brodynskii, *Shur. Fiz. Kim.* 48 (1974) 1194.
- [11] R. G. Bautista and D. S. Flett, Warren Spring Laboratory Report No. Lr 226 (ME) (1976) Stevenage, England.
- [12] J. A. King, PhD thesis, University of London (1966).
- [13] D. C. Price and J. P. Chilton, *Hydromet.* 7 (1981) 117.
- [14] D. C. Price, Met. Trans. 12B (1981) 231.
- [15] H. J. S. Sand, Phil. Mag. 1 (1901) 45.
- [16] T. Berzins and P. Delahay, J. Amer. Chem. Soc. 75 (1953) 4205.
- [17] T. Kato and T. Oki, Nippon Kinzoku Gakkaishi 37 (1973) 1338.
- [18] C. DeRantny and R. Breckpot, Bull. Soc. Chem. Belges 78 (1969) 503.
- [19] ASTM, X-ray Diffraction Index, 8–126.
- [20] P. Delahay and T. Berzins, J. Amer. Chem. Soc. 75 (1953) 2488.
- [21] P. Delahay, 'New Instrumental Methods in Electrochemistry', Interscience Publishers, New York, (1954).
- [22] E. Ghali, A. Maruejauls and D. Deroo, J. Appl. Electrochem. 10 (1980) 709.

- [23] ASTM, X-ray Diffraction Index, 12-41.
- [24] 'Gemlins Handbuch, Syst. 60, B(2)', Springer-Verlag, Berlin (1960) p. 627.
  [25] I. S. Ivanov, Zh. Prikl. Khim. 41 (1968) 1017.
- [26] D. F. A. Koch and R. J. McIntyre, J. Electroanal. Chem. 71 (1976) 285.
- [27] C. Wagner, Z. Chem. Phys. 21 (1953) 1819.